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A remarks on Braids

1 Why the braiding procedure is okay for checkerboard colorings?
2 They are not needed for the proof

3 They make the pictures “look nicer”



Recalling Definitions

Arrow polynomial smoothings

Diagram Colorability
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Nodal Cusps

Definition
An in-cusp is a cusp with the arrows pointing in, and an out-cusp is a cusp with the arrows

pointing out.
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Coloring Nodal Cusps

Definition
An in-coloring is when the inside of the acute angle formed by a cusp is colored, similarly,

an out-coloring is when the outside of the acute angle formed by a cusp is colored.
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Circle Graphs

A state o of some diagram D is given to us after we replace each classical crossing by its
oriented or disoriented smoothing. The state ¢ will consist of many “circles” which have

virtual crossings and cusps. These “circles” are what we call circle graphs.
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Fig. 9: Reduction rule for the arrow polynomial.
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Graphic from Qingying Deng , Xian’an Jin , Louis H. Kauffman(2020)



“Word” Notation for Circle Graphs

We can express each circle graph of a state o as a word with letters being of the form ¢<
or i~ with i € N. Each i< or i~ represents a cusp corresponding to the classical crossing
labeled 7, with the superscript < indicating that the cusp is in-colored and the super-script
> representing that the cusp is out-colored. In order to write a word start at any cusp and

move clockwise along the circle graph.

Example

A state o corresponds to a collection of words.



“Word” Notation for Circle Graphs

1. Words are cyclic, for example we have that a<b"c<d” = d”a<~b”c< = c<d”a<b”> =
b”c<d”a~. This corresponds to starting at different cusps in a circle graph containing 4
cusps.

2. Assuming that the diagram is colored, each crossing must form cusps that are both in-

colored or out-colored. So, a state o cannot have two words, one which contains 7< and

another which contains i~. (refer back to slide 5)

Examples: The state o cannot contain both the words a<b”c<~d”~ and b<¢g~. The state o

cannot contain the word b~ b<.



Claim 1

Claim
In any circle graph, every in-cusp is followed by an out-cusp and every out-cusp is followed

by an in-cusp.

Why? An out-cusp was the exit of some crossing before applying disoriented smoothing,
so, following either strand along the arrow must lead to the entrance of some crossing which

became in-cusp. Similar logic applies to the in-cusps. (look at slide 6 again)



Claim 2

Claim
If i<Xi<Y or i~ Xi”Y is a word of a circle graph of o, then X and Y both have even length.

proof: By the diagram below, every crossing makes one in-cusp and one out-cusp when
disoriented smoothing is applied. Hence, one of the cusps labeled 7 is an in-cusp and the

other is an out-cusp. By Claim 1 X and Y must have even length in order to maintain

X
in-cusp —> v
A <— out-cusp

alternating in-cusps and out-cusps.



Word Reducing Lemma

Lemma For a colored diagram, the word corresponding to some circle graph is reducible iff
it contains the subword a<b< or a~b~. If the word is Xa<b<Y or Xa~b”Y it can be reduced

to XY.

proof: The word is reducible iff the circle graph is, meaning that we can find some adjacent
pair of cusps that cancel. By the diagram below if two cusps are made to cancel by making
nodal arrows face the same direction then both must be in-colored or both must be out-

colored. A similar diagram works for the reverse direction.




Claim 3

Claim For any reduced word of o, it is trivial or the labels are all different.

proof: Suppose that W is a nontrivial word containing two cusps labeled 7. Without loss of
generality assume that both cusps labeled i are in-colored. Then, we have W = i< Xi<Y.
By Claim 2, X has even length and by the Word Reducing Lemma X = 1<2”3<..-2k~ or
X = 172587 =2k=. 86, W = (1515)2735 - 2671~Y ot W =1517253> <+« (2k~¢~)¥ both
of which can be reduced by the Word Reducing Lemma.



K-degree example
Note that any summand of (D) x4 has the following form:
s( It g jv
A(K; ' K;?---Kj”).
Then the k-degree of this summand is defined to be

11 X J1+i2 X j2+ -+ iy X Ju,

The k-degree of a state o is defined to be the k-degree of the summand corresponding to

state o.

Example If ¢ has the following circle graphs with multiplicity: d, K, Ky, K9, K5. Then, the
k-degree of o is degy(0) =1+ 2(2) + 5 = 10.



Claim 4

Claim For the state o, degy(0) = 0 mod 2, meaning that its k-degree is even.

start of proof: Let og be the state obtained when oriented smoothing is chosen for each
classical crossing. Then, no cusps are formed, so, deg,(c¢) = 0. Let 0 = 0,,, 05,1, ..., 01, 00,
be a sequence of states where o, differs from o, by changing one disoriented smoothing to
an oriented smoothing. We wish to show that degy (os+1) = degy(o¢) mod 2. Let i be the
classical crossing changed to a disoriented smoothing, and without loss of generality assume

that both of its cusps are in-colored in state oy, .

There are two possible cases:
Case 1 Both cusps i< belong to different circle graphs of oy

Case 2 Both cusps i< belong to the same circle graph of o4,



Changing a smoothing examples

Case 1 Case 2

— Xi<Yi<

Diagrams from Qingying Deng , Xian’an Jin , Louis H.
Kauffman (2020) X Y



Claim 4 Case 1

For Case 1 each cusp i< of is a part of different circle graphs of 0,1 meaning that they are

contained in separate words. The possible words are:

Case 1.1 W, =i~(ajas - az,_,) and Wy =i<(b705 - -~ by, ;)
Case 1.2.1 W, =i~(ata; ---a3,_;) and Wy = i~(b7b5 - - - by, 1)
Case 1.2.2 Wy =i<(ajas ---ay,_,) and Wy =i<(b7bs --- b5, 1)
Case 1.3 W, =i<~(ataz ---ay,_,) and Wy = i<(bybs - -- b3,,_1)

Notice that cases 1.2.1 and 1.2.2 are the same.



Claim 4 Case 1.1

Case 1.1 W) =i<(a7as ---a3,_,) and Wy = i<(b7bs - - - bs,,_4)

By the Word Reducing Lemma, the words W; and W, are reduced, which means that the
correspond to circle graphs Ky and K, in 64.1. On the other hand, in o, these circle graphs
combine, the corresponding word is (ajas - - asz._,)(b7bs -+ b3, ;). By the Word Reducing

Lemma, we reduce the word from the middle out as follows:
e > >1.< >
(ataz -« age_q) (b7 05 -+ b3_y)
SR E R Y4 S
= (afay - - a5 _,)(ag_,b7) (b3 -~ - by, )

= (a7ay -+ agy_o) (b5 -+ b3, 1)

Repeatedly applying this reduction will cancel all a’s or all b’s. What remains is a reduced
word of length 2m — 2k if all the a’s cancel or a word of length 2k — 2m if all of the b’s

cancel, which corresponds to circle graph K,, ;. or K;_,,. Hence we have that either:
degy(o¢) = degy(0es1) —k —m+ (m — k) = degy (0441) mod 2

or

degy(o¢) = deg(o4r1) — k —m + (k —m) = degy(0sy1) mod 2



Claim 4 Case 2

For Case 2 each cusp i< is part of the same circle graph of o,,; meaning that they are contain
in the same word. By claim 2, the subwords consisting of a’s and 6’s must have even length.

The possible words are:

Case 2.1.1 W =i~(aTa

>
<
2m
>

Case 2.2.1 W =i~(aTa

h<
2m

(a7 a3 )i<( b3m)
Case 2.1.2 W =i~(aTa; - --ay,)i<(b7by - b))
(a7 a3 )i=(brbg - - - by,)
Case 2.2.2 W =i<(a7as |l b5

ay a

Case 2.1.1 and Case 2.1.2 are analogous by cyclic permutation on the word W. Similarly,

Case 2.2.1 is analogous to Case 2.2.2



Claim 4 Case 2.1.1

Case 2.1.1 W =i<(a7a5 -+ - a5, )i<(bybs -+ - b3,)

By the Word Reducing Lemma, the reduced word is W = i<(a7a3 - -- a5, )(by - - - b3,,), this
word has length 2m + 2k which means that it corresponds to the circle graph K, ;. in o4y ;.
On the other hand, in o; the circle graph splits into two circle graphs, the corresponding
words are W, = (a7ay ---a5,.) and Wy = (bybs ---bs,,). By the Word Reducing Lemma
Wi, Wy are reduced and so correspond to the circle graphs K, and K,,. Hence, we have

that:

degr(0p+1) = degg(oe) — (m+ k) + kK +m = degg(0¢) mod 2



Theorem 4.3 (1)

We have shown Claim 4 which stated that a checkerboard colored diagram D only has states
o with even k-degree. It follows that the set of all k-degrees of summands of the arrow

polynomial (D) x4 must be even.



Possible Ways Forward

1. New Invariant
2. Trying something with cables(every 2-cabled diagram is checkerboard
colorable?)



